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Abstract-In this paper, based on the principle of virtual work, the formulation of the flexibility matrix and
the static analysis of a skew-curved beam in the most general case of loading and response are presented.
Each di1ferential element of the centroidal axis of the beam is given six degrees of freedom; namely, three
translations and three rotations. Three internal forces and three internal moments are assumed to act at
each point of the centroidal axis of the beam. Finally, the results of the method are illustrated through the
derivation of the flexibility influence functions, associated with a cantilever helicoidal beam.
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Frenet trihedron
unit binormal vector
matrix of direction cosines of t, II, b
matrix defined in eqn (27)
flexibility matrix defined in eqn (22)
submatrices defined in eqn (22)
matrices defined in eqns (II)
unit matrix
relation defined in eqns (9) and (10)
vector of continuous external moments
vector of concentrated external moments
unit virtual moments
vector of internal moments
unit normal vector
matrices defined in eqns (II)
global coordinate system
unit virtual forces
vector defined in eqns (25)
vector of concentrated external forces.
position vector
vector of external concentrated forces
matrix defined in eqn (6)
arc length
vector defined in eqn (36)
stiffness matrix
vector of internal forces
unit tangent vector
arbitrary parameter
vector defined in eqns (26)
flexibility influence functions
vector of deflections
vector defined in eqn (19)
matrices defined in eqns (16), (17)
matrix defined in eqn (21)
constants given in the text
flexibility influence functions
vector of rotations
vector defined in eqn (18)
superscripts or arbitrary parameters
subscripts
superscripts
summation indices
star indicating quantities referred to the global coordinate system

1. INTRODUCTION
The analysis of skew-curved beams under static loading has been treated quite extensively by
many investigators. The stiffness approach has been used by Baron and Michalos[l],
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Michalos[2] and Veltuni[3] in analysing continuous curved beams. Others, such as Fickel[4],
Patel [5] and Pippard [6] have investigated continuous curved beams using the flexibility
method. Tuma and Reddy [7] have applied the flexibility method in analysing laterally loaded
planar continuous curved and bent beams. Also of interest is the work of Wittfoht[8] and
Dabrowski [9], both of whom investigated horizontally curved beams. Dabrowski's analysis, like
the analysis of Unold [10], was based upon the solution of the governing differential equations.
Also, Abdul and Shukair[ll] have investigated indeterminate continuous helicoidal girders by
the flexibility approach, on the basis of the assumption that the work of shearing and normal
forces may be neglected in the expression for the elastic-strain energy. Finally, in Refs.[12]
[18], static analyses of planar or skew-curved beams with constant radii of curvature and
torsion were presented.

A more complete research of the aforegoing problem is included in the papers by Young[19]
and Morris [20]. In the first, the flexibility method was used to determine the flexibility influence
functions of a skew-curved beam, whose centroidal axis was considered to be composed by
straight components. Limiting the deriving difference equation the aforegoing functions result
for the cases of planar curved beams. In the second [20], the stiffness-matrix method was also
used for the static analysis of planar curved beams with constant radius of curvature, by
making the assumption that in the elastic-strain energy expression the influences of shearing
deformation may be neglected. In Ref. [21] the closed form solution of the differential equations
with variable coefficients, (in terms of generalized forces and displacements), governing the
equilibrium of a skew-curved element is presented. Finally, Washizu[22] presents an ap
proximate method of a cantilever skew-curved beam, with emphasis on the derivation of
governing equations which take into account the effects of torsion and transverse shear
deformation.

In this investigation, based on the principle of virtual work, the formulation of flexibility
matrix and the static analysis of a skew-curved beam in the most general case of loading and
response are presented. The beam was assumed to undergo infinitesimal deformations and
therefore the entire development was based on linear elastic analysis. Each differential element
of the centroidal axis of the beam was given six degrees of freedom; namely, three translations
and three rotations. It must be noticed also that, applying the principle of virtual work, all the
influences of internal forces and moments are taken into account. In addition, the flexibility
matrix was determined with respect either to a local or to a global rectangular coordinate
system. Finally, the results of the method were illustrated through the derivation of the
flexibility influence functions, associated with a cantilever helicoidal beam. The derived
relations are in agreement with those of Refs. [11] and [21].

2. MATHEMATICAL FORMULATION
Consider a skew-curved beam of uniform cross section, whose centroidal axis is defined by

the position vector ~ = ~(u) = [!(u), y<u), 1(uW; where u is an arbitrary parameter and the
superscript "T" indicates the transpose of the vector. Consider also, at an arbitrary point AK
of the beam, the Frenet tihedron AK 123 with unit vectors W, nK, bK); where tK=
[ttK(u), t2K(U), t/(uW is the unit tangent vector pointing to the direction of increasing arc s,
nK= [ntK(u), n2K(u), n3K(uW is the unit normal vector pointing to the center of curvature and
bK= [b.K(u), b2K(U), b/(u)f is the unit binormal vector; bK is defined in such a way that the
correspodning Frenet trihedron to be a right-handed system. Also, TK = [T.\ T2K, T/f and
MK = [MtK, M2\ M3KjT denote the vectors of generalized forces (internal forces and moments
respectively), while 'ftK =["'tK, "'2K, "'3KjT and yK = [y.K, Y2K, y/]T denote the vectors of
generalized displacements (rotations and translations respectively) of the cross section A" of
the beam, Fig. 1 (la, Ib). Note that the axes 1,2,3 of Frenet trihedron coincide with the principal
axes of the cross section of the beam.

2.1. Generalised forces
Consider the cantilever skew-curved beam AOJI, at the point AK of which the concentrated

external force 81" = CPt, P2K, P3K] and moment J{.K = [M t \ M2K, M3"f are applied, Fig. 2.
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Fig. l(a, b). Geometry and sign convention of an element of a skew-curved beam.
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Fig. 2. A cantilever skew-eurved beam subjected to a general loading and to three unit virtual forces and moments at the
point AA,
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Based on the vectorial equations governing the equilibrium of the arc AOA\ the vectors of
generalised forces at a cross section AA of the beam are expressed by

where:

TA = [gltKl\ gltKn\ gltKbAf

MA= [.,WIK, .IWn\ ./WbAf + rKx [971 KI\ 971 Kn\ 971 KbAf

(1)

(2)

(3)

In eqn (3) rK is the position vector related to the Frenet trihedron AK 123, while 0" =

[t/, n/, b/f denotes a (3 x 3) matrix of the direction cosines of the unit vectors (r\ n\ bA) at the
point AA; it is valid that D[Df =D[Dr l =I; I being the (3 x 3) unit matrix.

Equations (1) and (2) may be written, after some simple manipulations,

where:

TA = 0" [D"fgltK

MA = 0" [D"fJtK +R"O" [D"fglt"

(4)

(5)

(6)

Assume that n +1 concentrated external forces gtK and moments .«" act at n +1 points
A"(K = 0,1, ... ,n) of the cantilever beam AIlI respectively. The generalised forces and
moments at the cross section AA are determined by:

where

r = oA ~ [D"fgtK
K=O

MA = oA ~ [D"]TJt" +~ RKoA [DK]Tgt"
K=O K=O

p<A<p+1.

(7)

(8)

Finally, in the case of a continuous external loading q(u) = [q,(u), q2(U), q3(U)f and
m(u):::: [m.(u), m2(u), m3(u)f acting on the beam AIlI, the generalised forces at AA(U) result,
(Fig. 2):

r = oA JUA [D{]Tq(~)I(~) d~
Uo

MA:::: oA (A [Dffm(~)I(~) d~ +L:A R{oA[Dffq({)I(~) d{

(9)

(10)

where the variable ~ takes the same values with the parameter u and I(~) =
(d2xlde +d2yld~2 +d2zlde)l/2.

2.2. Generalized displacements

Consider the cantilever skew-curved beam AIlI, at the point A" of which the concentrated
external force SR" and moment JI." are applied, Fig. 2. The determination of generalized
displacements at a cross section AA will be achieved through the application of the principle of
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virtual work. Thus, for a random point A~ of the beam the matrices H~, ii~, Nt and Nt are
determined by:

Ht = [H£] = Dt[D"]T

ii~ = [iit] = R"D~[D"f i,j = 1,2,3

N~ = [Nt] = Dt[DK]T

N~ = [Nt] = RKD~[DKf.

(11)

Using relations [4], (6), and (11) the vectors of generalized forces at A~ can be obtained:

T~ = N~S1tK

Mt = N~,,«K +N~S1tK.
(12)

(13)

Furthermore, the unit virtual forces P/ = 1 and moments M/ = 1 are successively applied at
A", Fig. 2.

The vectors of generalized forces at A~, due to these virtual loadings, result:

Mttj =[Hii' mj , Hjj ] due to M/ = 1

T~i = [Hfj , H~i' Hjj ] due to p/ = 1

M~j = [iifj , ii~i' iij)

Using the principle of virtual work and relations (11) to (13) the components of generalized
displacements at A" are given by:

(14)

(15)

where j = 1,2,3 and T, (T are summation indices 1,2,3, while at. a2, a3, Ph fh, P3 are constants
given by:

In these relations E, G denote the elastic and shear moduli respectively; 11 is the torsional
moment of inertia; 12 and 13 are the moments of inertia of the cross section about the axes of n
and b respectively; F is the area of the cross section. Finally, .\2 and .\3 are coefficients
depending on the shape of the cross section.

The vectors of generalized displacements at A" through eqns (14) and (15), derive as:

(16)

(17)

where the elements of the diagonal matrices A and B of dimensions (3 x 3), are the ceofficients a,
and P, respectively.

When n +1 concentrated external loadings ~K and ,MK are applied at n + 1 points AK

(K = 0, 1,2, ... , n) of the cantile\'er beam A00 respectively, the vectors of generalized dis-



788 D. E. PANAYOTOUNAKOS and P. S. THEOCARIS

placements ,pA and yA at AA result:

n
yA = 2: yA,K.

K=O

(18)

(19)

In relations (18) and (19) WA,K and yA,K are the vectors of generalized displacements at the
cross section AA due to the concentrated loading at the point AK

•

Finally, in the case when a continuous external load q and m and temperature changes are
applied on the beam AOB, the vectors of generalized displacements at AA result:

l{tA = i~B [AHtf{L: {NKm(K) +NKq(K)}I(K) dK }I(t) dt +fB [AW]T{I: I(K) dK }I(t> dt (20)

yA = fUB [BHtf{f< Wq(K)I(K) dK }I(t) dt + fUB [AH<v{f< {NKm(K)
UA"'O UA Uo

+NKq(K)}I(K)dK}I(t)dt+ i~B[AWr{i: I(K)dK }I(t)df (21)

The elements of the diagonal matrix Aof dimensions (3 x 3) appearing in the eqns (20) and (21)
are the coefficients iiI = >"O(t1/3/h3), ii2= (t1/2/h2) and ii3= >"ols where M3 = IT - II and t1/2= 10 - tu
represent constant temperature differences of the limits of the cross section with respect to the
band n-axes respectively; ts represents the uniform change of temperature of the centroidal
axis and >"0 the coefficient of the thermal expansion; Finally h3 and h2 denote the maximum
dimensions of the cross section parallel to the axes of band n respectively, Fig. 1.

3. FLEXIBILITY AND STIFFNESS MATRICES

Assume the cantilever skew-curved beam AD and the Frenet trihedron Atnb at the free end
A. We notice the axes of the system by the numbers 1,2,3, and 4, 5, 6, in such a way that 1 and
4 correspond to the vector t; 2 and 5 correspond to the vector nand 3 and 6 to the vector b. In
the following, symbols representing moments or rotations will be defined by the subscripts i
and j (i, j = 1,2,3), while symbols representing forces or translations by the subscripts k and I
(k, 1= 4, 5, 6) respectively, Fig. 3(a). By applying the principle of virtual work for unit loadings
acting at the free end A and based on relations (14) and (15), the (6 x 6)-flexibility matrix F of
the beam AD is determined and given by:

(22)

Thus, physically, l/Ijj is the rotation about the i-axis due to a unit moment about the j-axis; Ykl

is the translation in the direction k due to unit force in the I-direction, Fig. 3(b). The analytical
expressions of the flexibility influence functions f/Jijo f/JiI, Ykj and Ykl are given in the Appendix. It
must be noticed that, due to the Maxwell's reciprocal theorem, the following relations are valid:

f/Jij =f/Jjj

Ykl = Ylk

f/Jil = Ykj·

(23)

Consequently F is a symmetrical matrix and the (3 x 3) submatrices FII , Ft2, F21 and F22 satisfy the
relations: Fit, F22 = symmetrical submatrices

(24)
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Fig. 3. (a), A cantilever skew-curved beam subjected to a unit virtual loading at its free end; (b), A physical interpretation
of the flexibility influence functions of the cantilever beam.

The inverse of F is the stiffness matrix S of the beam, i.e.

The matrices F and S are associated with the local system A123.
Their transformation concerning to the global coordinate system oly~ can be achieved

through the following equations:

*r=Dr,w=Fp,p=Sw
* *w=Dw,p =Dp

(25)

(26)

where p is the vector of external moments and forces being applied at the free end A with
respect to the axes of Frenet trihedron A123 (p = [.M, gpt]T = [Pl. ... ,P6f); w is the vector of
generalized displacements of the free end A with respect to the Frenet trihedron, due to the
loading p (w = ['I', Y]T = [WI. . .. , W6]T) and Dis a (6 x 6) matrix of the form:

D= P,D (O~
L(o) DJ

where (0) is the (3 x 3) zero matrix.
From relations (25H27) the following two equations result:

*F=DTm

*S=DTSD

(27)

(28)

(29)

* *
where F and S are the flexibility and stiffness matrices associated with the global coordinate•••system oxyz.

4. STATICALLY INDETERMINATE SKEW-eURVED BEAMS
In this section the static analysis of skew-curved beams of practical engineering importance

is presented; the analysis is based on the method developed in the previous sections.
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4.1 Beam with both fixed ends
Let it be that a skew-curved beam AD with both fixed ends is subjected to a general loading.

Consider also the corresponding cantilever beam, with D its fixed end. The vector of general
ized displacements w at the cross section A of the indeterminate beam AD is defined by:

w = wo+ Fp (30)

where F is the flexibility matrix of the cantilever AB; Wo = ['1'0, vof is the vector of generalized
displacements of the cantilever AD at A due to the external loading and p = [Mo, TolT is the
vector of the unknown reactions of the indeterminate beam AD at the end A. The kinematic
boundary conditions of the cross section A are:

w =0.

Inserting (31) to (30) the unknown vector p can be determined by:

p = -Swo.

(31)

(32)

The definition of the vectors of generalized forces and displacements at a generic point of
the indeterminate beam AD can be achieved through relations (7)-(10) and (18)-(21).

4.2 Beam with one end fully fixed and the other end supported by an immovable spherical hinge
Consider the skew-curved beam AD, with one fixed end at the point D and one spherical

hinge at the point A. Consider also, the corresponding cantilever beam AB. The static and
kinematic boundary conditions of the indeterminate beam AB at the cross section A are:

M=V=O.

Using (33), relation (30) becomes:

[
'1'] = [FII FJ21[0l+ r*ol
o F21 F2J -TJ LVoJ

(33)

(34)

where '1'0 and Vo are the vectors of generalized displacements of the cantilever AD at A.
Through relation (34) the unknown vectors T and 'I' can be determined by:

T= -F22JyO

'I' = - FI2Fz:lT + 'Ito.
(35)

The generalized forces and displacements at a generic point of the indeterminate beam AD
result in the same way as in Section 4.1.

4.3 Beam with one end fully fixed and the other end simply supported
Assume the skew-curved beam AD, with one end D fully fixed and the other A simple

supported.
If S denotes the unknown reaction at the point A the following relation is valid:

T= S = 118115 (36)

where IISII is the norm of the vector Sand s(sJ, S2, S3) is the known unit-vector of the direction of
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the support A. The static and kinematic boundary conditions at A are:

M=O

ys=o.

Using (37), (36) and (34) relation (30) is transformed to:

and through eqn (39) the unknown norm derives:

791

(37)

(38)

(39)

IISlI=
sryor

- T, U are summation indices 1,2,3.
srSu(Ff2]

(40)

It should be noticed here, that all the previously derived vectors and matrices are related to
the Frenet trihedron A123.

5. APPLICATION TO AN HELICOIDAL BEAM
The application chosen here presents the development of the complete set of flexibility

influence functions for an helicoidal cantilever beam AB of uniform cross section and length
S = «({)18), (8 = sin 8/a). The parametric equations of the beam with respect to the global

d· ......coor mate system oXYZ are:

*x=acos({)

* .y = a sm({)

*Z =(({)

cot 8 =1.
a

where a, ({) are the polar coordinates of the corresponding circular cylinder; ( is a constant
given by (= (fm1T), in which f3 denotes the step of the helix; 8 is the constant angle of every
point of the helix between the tangent and the generator.

Based on the procedure described previously and by applying relations (41), the flexibility
influence functions of the beam AB derive as:

1/111 = a sin 8[a I(sinz8I.. + (() cosz8 cotZ8 +2cosz81z)+azI3+ a3 cosz8«({) + I.. - 2Iz)]

I/1IZ = a [a I(sinz81s+cosz811) - azis- a3 cosz8(11 -Is)]

1/113 = a cos 8[al{sinz8(1z - I..) +cosz8«({) -Iz)}- azl3 +a3{cosZ8(lz- I..) + sinz8«({) -Iz)}]

I/1ZI = I/1IZ

1/122 = .a " [al sinz813 +azI.. +a3 cosz813]
S100

1/123 = a cot 8[al sinz8(11-Is) +azls - a3(cos28Is + sin2 II)]

1/131 =1/113

1/132 = 1/123

1/133 = a c~SZ! [al sin2 8«({) + I.. - 21z) +azl3 +a3(cosz8I.. + (() sinz8 tanZ8 +2 sin2 8Iz)]
SlOu
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1/114 = a 2COS ~[al{sin2 ~(212 - 2L - I/O) + cos2~(2cp - 212-~)} - a2(13 - I/O)
+ a3{cos 2~(- cp + 212- L) + cos2~(~ - I/O)}]

1/115 = a2cot ~[al{sin2 ~(lg - Is) + cos28(17- II) + a21s - a3{sin28(11- Is) + cos2
~(17 - Ig)}]

2

1/116 = ~ ~ [al{sin2~ COS 28(L - 12) + cos2~ COS 28(- cp + 12) + cos2~(sin2 81/0 + cos28~)}
smu

- a2(cos2~I/O + sin2813) + a3 sin 8 cos 8{sin 2~(- cp + 212- L) + cot 8 cos28(1/0 -16)}]

1/124 = a 2cot 8[alsin28(211- 21s-Is) + a2(1s - Ig) - a3{cos 2~(ls - II) + cos28Is}]

a 2 cot ~ [ , 2 ' 2 2
1/12S = , 8 al sm 8(1/0 - 13) - a21/O + a3(sm ~13 + cos ~I/O)]

sm

1/126 = a 2[al{cos 2~(ls - II) + cos28Is} + a2(1s + coe ~Ig) - a3 cot 8{sin 28(1s - II) - cot 8 cos2
~Is}]

a 2 cos2~ , 2
1/134 = , 8 [al sm 8(2cp - 412- ~ + 2L + I/O) + a2(13 -I/O)sm

+ a3{cos 28(L - 12) + tan28 cos 2~(- cp + 12) + sin28~ + cos281/O}]

ljs3s =a2coe ~[al sin2~(17 -Ig-II + Is) - a21s - a3{tan2~(COS2 ~Is + sin2811) + cos281g+ sin2817}]

1/136 = a2cos ~[al{cos 2~(212- L - cp) + cos28(~ - I/O)} + a2(13 + tan2~I/O) +

a3gi~:;~ (L - 12) + 2 sin2~(- cp + 12) - coe ~(COS2 81/0 + sin28~)}]

Y41 = 1/114

Y42 = 1/124

Y43 = 1/134

YSI = I/IIS

YS2 = 1/12S

YS3 = 1/135

Y61 = 1/116

Y62 = 1/126

Y63 = 1/136

a
3 cos2 8 [ , 2

Y44= , ~ alsm ~(4cp+414+113-812-4~+4I/O)+a2(13+llr2I/O)sm

{
COS

2
2~ 2 }]+ a3 cos2~ (cp + L - 212) + cos 8113 + 2 cos 2~(I/O - 16)

+a sin ~[I3!(sin2 8L + cp cos28 coe ~ + 2 cos2~12) + 13213 + 133 cos2~(cp + 14 - 212)]

Y4S = a 3coe ~[al sin2~(217 - 211 - 21g+ 21s - lis + Is) - a2(ls - lis)
- a3{cos 2~ tan2~(ls - II) + sin2~Is + cos 2~(lg - 17) + cos2~lls}]

+ a[l3l(sin2«5ls+ cos2«511) -1321s -133 cos28(11-Is)]

Y46 = a3

,co~ 8 [a! sin28{cos 28(412- 2L -I/O + ~ - 2cp) + cos2«5(2~ - 21/0 -113)}
sm

{ . 2 2} {Sin 48+ a2 sm 8(13-I/O) + cos ~(I/O -114 + a3 -2- tan «5(14- 212+ cp)

sin 28 . 2 2 4 }]+ -2- (sm 8 - cot «5 cos «5)(1/0 -16) - cos 8113

+ ~ si,n ~8 [131{sin28(12 - L) + cos28(cp -12)} -13213 + 133{cos28(12 -14) + sin28(cp - h)}]
sm

YS4 = Y4S
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3 28
Yss =a ~o~ [al sin28(114 +13- 21 10)+a2113 +a3(sin28 tan2813+cos28114 +2sin28110)]Sin

+ .a ~ [/31 sin2813+/32~ + /33 cos2813]Sin u
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YS6 = a
3
.co~ 8

[at sin 8{cos 28(19 - 17 - Is +II) +cos28(lls - Is)} - a2(sin 81s+cot 8 cos 81 1S)
Sin

- a3{2 sin38(ls- II) +cos 8 sin 28(19 - 17) - cos28 sin 8(1s +cot2 81Is)}]
+a cot 8[131sin28(11 - Is) + /321s - /33(sin2811+cos2'8Is)]

Y64 =Y46

Y6S = YS6

a 3

Y66 =~ [al{cos48113 +cos228(~+ Ip - 212)+2cos 28 cos28(110 - 4)}
Sin 0

+a2{sin2813+coe 8 cos28114 +2cos2811O}

+a3{sin228(1p +14- 212)+cot2 8 cos48113 - 4cos48(110 - 4)}]

+a ~os; 8 [/31 sin28(1p +14- 212)+ /3213+ /33(COS28~+ Ip sin28 tan28+2sin2812)].Sin

The integrals II-lIs are given in the appendix. In some special cases, the above given
relations treated by the corresponding Refs. [11] and [21] are in agreement with the results
derived in these references.

6. CONCLUSIONS
In this paper the formulation of the flexibility matrix and the static analysis of a skew

curved beam, in the most general case of loading and response are presented based on the
principle of virtual work. Among the most important results of this investigation one may list
the following:

1. The derivation of the vectors of generalized forces and displacements at a random point
of a cantilever skew-curved beam under general loading by taking into consideration all the
internal forces and moments.

2. The exact formulation of the flexibility matrix of a cantilever skew-curved beam with
respect to a local or global coordinate system;

3. The static analysis of skew-curved beams in the most general case of loading and
response by using the flexibility matrix, and

4. The derivation of flexibility influence functions associated with a cantilever helicoidal
beam, by considering all the internal forces and moments acting on the beam for the expression
of the principle of virtual work.
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APPENDIX
The analytical expressions for the flexibility inftuence functions included in relations (22) are given by:

I.
ua

""j =aT H~H~ 1(f) d~

I.
u:a

"'u =aT uA H$,IW d~ ..

I.
u

a
I,],k,/ = 1,2,3

Ykj = aT H~H~I(~) d~
UA

I.
ua I.ua

YkI =~, H~H~I(~) d~ +a, H~H~I(~)d~
&lA, U",

where r is summation index 1,2,3
The analytical expressions for the integrals II to lIS are expressed by:

II = L~ sinrpdrp =-cosrp+ I

h = L~ cos II' drp = sin II'

i
~ .2 II' sin 211'

1)= sm II' drp =--
o 2 4

L = (~ cos2 II' drp =!+ sin 211'
Jo 2 4

Is = L~ sin II' cos II' drp = -~cos 211' -I)

I,; = L~ II' sin II' drp = sin II' - II' cos II'

17 = L~ II' cos II' drp = cos II' + II' sin II' - I

(~ 2 I{ 1 }
L = Jo II' sin2

II' drp =~ - 4 II' sin 211' +2(cOS 2ip -I)

19 =rII' cos
2

II' dip =~+H II' sin 211' +~(COS 211' -I)}

110 =L~ rpcosrpsinrpdip=-~(rpCOS2ip-~Sin2rp)

I" = L~ 11'2 sin II' drp = - 11'2 cos II' + 2(ip sin II' + cos ip -I)

112 = L~ 11'2 cos ip dip = ip2 sin II' + 2(11' cos II' - sin 11')

In = L~ 11'2 sin2 II' drp =~-H11'2 sin 2ip +ip cos 211' -~sin 2ip )

(~ ) I( I)114 = Jo 11'2 cos2
II' drp =~ +4 11'2 sin 2rp + II' cos 2ip - 2sin 211'

lIS = L~ 11'2 sin II' cos II' drp = -H 11'2 cos 211' - II' sin 211' -~(cos 211' -I)}.

(41)


